New Flutter Analysis Technique for Time-Domain Computational Aeroelasticity

Prepared For:

58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference Grapevine, Texas, January 9-13, 2017

Prepared By:

Chan-gi Pak and Shun-fat Lung

Structural Dynamics Group, Aerostructures Branch (Code RS)

NASA Armstrong Flight Research Center

Overview

☐ Theoretical background (slides 3-6)

☐ Computational validation (slides 7-18)

☐ Conclusions (slide 19)

Structural Dynamics Group Chan-gi Pak-2/19

What the technology does

Problem Statement

- ☐ The classical method of determining the flutter speed from CFD results is using a time-consuming trial-and-error process.
- Previous technologies provide system damping factors and frequencies at a single dynamic pressure with a single CFD run.

<u>Objective</u>

 Develop a simple efficient approach for flutter speed and frequency prediction

Structural Dynamics Group Chan-gi Pak-3/19

Previous technologies

- Bennett, R. M., and Desmarais, R. N., "Curve Fitting of Aeroelastic Transient Response Data with Exponential Functions," NASA-SP-415, pp. 43-58, 1975.
 - ❖ Non-linear least squares fitting

- $q(t) = q_0 + \sum_{i=1}^{n} e^{-\sigma_i t} \left\{ A_i cos(\omega_{di} t) + B_i sin(\omega_{di} t) \right\}$
- \triangleright Optimization problem; strongly depends on starting damping factor and frequency values
- * Results are system damping factors and frequencies
- Pak, C.-G., and Friedmann, P. P., "New Time Domain Technique for Flutter Boundary Identification," AIAA-92-2102, AIAA Dynamics Specialist Conference, Washington, D.C., 1992.
 - Assume that an aeroelastic (structure + aerodynamic) system is **unknown**.
 - **Solution** Estimate aeroelastic system matrices using single-input single-output parameter estimation together with ARMA model
 - Compute aeroelastic system damping factors and frequencies

Technical features of new technology

- Approach
 - ❖ Structural model is assumed **known**.
 - ❖ The unsteady CFD analysis is performed using an estimated dynamic pressure, q_D.
 - > Use a linear panel code or test data
 - Non-dimensionalize orthonormalized aerodynamic force vector.
 - **Solution** Estimate **unknown** aerodynamic system matrices, \mathbf{A}_a , \mathbf{B}_a , \mathbf{C}_a , & \mathbf{D}_a , using a multi-input multi-output parameter estimation.
 - Multi-input: orthonormalized deflection vector
 - Multi-output: orthonormalized aerodynamic force vector
 - Compute the critical dynamic pressure using the known structural model and the estimated aerodynamic model.
 - Each iteration solves for the critical dynamic pressure, q_D, and uses this value in subsequent

Finite element model: M & K

Frequencies ω_{ι} & mode shapes Φ

Updates $q_D = q_{CD}$

Step 1: Run a CFD code @ Mach number M_a & dynamic pressure q_D

Step 2: Compute orthonormalized aerodynamic force vector N_k at each time k

 N_k/q_D

Structural dynamic model (known)

$${\boldsymbol{\eta} \brace \dot{\boldsymbol{\eta}}}_{k+1} = \Psi {\boldsymbol{\eta} \brace \dot{\boldsymbol{\eta}}}_{k} + \Theta \left(\frac{\boldsymbol{N}_k + \boldsymbol{N}_{k+1}}{2} \right)$$

Step 4: Compute critical q_D using $q_D - g \& q_D - f$ curves

$$\begin{bmatrix} \mathbf{I} - \frac{q_D}{2} \mathbf{\Theta}_1 \mathbf{D}_a & 0 & -\frac{q_D}{2} \mathbf{\Theta}_1 \mathbf{C}_a \\ -\frac{q_D}{2} \mathbf{\Theta}_2 \mathbf{D}_a & \mathbf{I} & -\frac{q_D}{2} \mathbf{\Theta}_2 \mathbf{C}_a \end{bmatrix} \begin{pmatrix} \mathbf{\eta} \\ \dot{\mathbf{\eta}} \\ \mathbf{X} \end{pmatrix}_{k+1} = \begin{bmatrix} \mathbf{\Psi}_{11} + \frac{q_D}{2} \mathbf{\Theta}_1 \mathbf{D}_a & \mathbf{\Psi}_{12} & \frac{q_D}{2} \mathbf{\Theta}_1 \mathbf{C}_a \\ \mathbf{\eta} \end{pmatrix} \begin{pmatrix} \mathbf{\eta} \\ \dot{\mathbf{\eta}} \end{pmatrix}$$

Aerodynamic model (unknown)

$$X_{k+1} = \mathbf{A}_a X_k + \mathbf{B}_a \boldsymbol{\eta}_k$$
$$N_k = q_D \mathbf{C}_a X_k + q_D \mathbf{D}_a \boldsymbol{\eta}_k$$

Step 3: Estimate aerodynamic system matrices using system ID

Technical features of new technology (continued)

☐ Structural dynamic differential equations of motion in matrix form:

$$\mathbf{M}\ddot{q} + \mathbf{C}\dot{q} + \mathbf{K}q = \mathbf{Q}$$

 \Box Generalized displacement vector q:

$$q \equiv \Phi \eta$$

☐ Orthonormalized differential equations of motion:

$$\ddot{\boldsymbol{\eta}} + 2\boldsymbol{\zeta}\boldsymbol{\omega}\dot{\boldsymbol{\eta}} + \boldsymbol{\omega}^2\boldsymbol{\eta} = \boldsymbol{N}$$

☐ State differential equation in continuous time *t*:

$$\begin{Bmatrix} \dot{\boldsymbol{\eta}} \\ \ddot{\boldsymbol{\eta}} \end{Bmatrix} = A \begin{Bmatrix} \boldsymbol{\eta} \\ \dot{\boldsymbol{\eta}} \end{Bmatrix} + BN$$

 \square State difference equation in discrete time k:

$${\boldsymbol{\eta} \brace \dot{\boldsymbol{\eta}}}_{k+1} = \boldsymbol{\Psi} {\boldsymbol{\eta} \brace \dot{\boldsymbol{\eta}}}_{k} + \boldsymbol{\Theta} \left(\frac{\boldsymbol{N}_{k} + \boldsymbol{N}_{k+1}}{2} \right)$$

 Φ =mode shape

 η =orthonormalized coordinate vector

$$N = \Phi^T Q$$

$$A = \begin{bmatrix} 0 & I \\ -\omega^2 & -2\zeta\omega \end{bmatrix} \qquad B = \begin{bmatrix} 0 \\ I \end{bmatrix}$$

$$\Psi = e^{A\Delta T} \Theta = \Gamma B \Gamma = \int_{0}^{\Delta T} e^{A(\Delta T - \sigma)} d\sigma \Delta T = \text{time step}$$

Computational Validation

Cantilevered rectangular wing model

Structural Model & Results from Modal Analysis

- ☐ Configuration of a wind tunnel test article
 - * Has **aluminum insert** (thickness = 0.065 in) covered with **6% circular arc** cross-sectional shape (**plastic foam**)
 - ❖ lumped mass weight are computed based on 6% circular-arc cross sectional shape.
 - ➤ Use structural dynamic model tuning technique
 - ➤ Chan-gi Pak and Samson Truong, "Creating a Test-Validated Finite-Element Model of the X-56A Aircraft Structure," *Journal of Aircraft*, Vol. 52, No. 5, pp. 1644-1667, 2015. doi: http://arc.aiaa.org/doi/abs/10.2514/1.C033043
- ☐ Modal analysis
 - ❖ NASTRAN sol. 103

Measured and computed natural frequencies

Mode	Measured (Hz)	Computed (Hz)	% Error
1	14.29	14.29	0.0
2	80.41	80.17	-0.3
3	89.80	89.04	-0.8

6% Circular arc A-A

0.065" aluminum insert Flexible plastic foam

Structural Dynamics Group Chan-gi Pak-8/19

CFL3D model & spline between CFL3D and NASTRAN

- CFL3D v.6 code is used.
 - Compute orthonormalized displacement and aerodynamic force vectors.
 - The CFD grid is a multi-block ($97 \times 73 \times 57$) grid with H-H topology.
 - ❖ The <u>first **three** flexible modes</u> are used.
- Splines between CFL3D and NASTRAN
 - Use interpolation element, RBE3, between FE grids and CFD grids.
 - ❖ Include CFD grids in structural FE model
 - ➤ Structural FEM grids: master DOF
 - ➤ Surface CFD grids: slave DOF

Structural Dynamics Group

FEM and CFD grids connection using RBE3 elements

Structural Dynamics Group Chan-gi Pak-10/19

Mode shapes of the cantilevered rectangular wing on structural and aerodynamic models

Structural Dynamics Group Chan-gi Pak-11/19

Local Mach number contour from steady CFD computations

Structural Dynamics Group Chan-gi Pak-12/19

(q_D-g) and (q_D-f) plots for initial $q_D = 1.0$ psi

(q_D-g) and (q_D-f) plots for SOCIT $(q_D = 1.20 \text{ psi})$ and n4sid $(q_D = 1.30 \text{ psi})$

(q_D-g) and (q_D-f) plots for SOCIT $(q_D = 1.40 \text{ psi})$ and n4sid $(q_D = 1.45 \text{ psi})$

Time histories of orthonormalized displacement with dynamic pressures of 1.45 and 1.46 psi

Flutter boundary of the cantilevered rectangular wing

Time histories & PSDs of the first three orthonormal displacements

- **25Hz**, 35Hz, **46Hz**, & 90Hz
- ☐ <u>CFL3D with Euler option</u> could not provide the correct orthonormalized displacement and force vectors with the <u>first three</u> structural dynamic modes.

Conclusions

- A new time-domain technique for computing flutter speed and frequency based on computational fluid dynamics (CFD) results was presented.
 - The CFL3D v.6 code with the Euler option was used for solving the 3-D flows on the structured grid.
- The full aeroelastic model is created by coupling the **estimated** aerodynamics model with the **known** structure dynamic model.
 - The proposed approach is successfully implemented to identify the flutter boundaries of a <u>cantilevered</u> <u>rectangular wing model</u>.
 - **Computed flutter speeds and frequencies are** <u>in good match with measured quantities</u>, however, the CFL3D code with the Euler option could not provide the correct orthonormalized displacement and force vectors with the first three structural dynamic modes in <u>transonic speed regimes</u>.
- ☐ Surface grids of the CFD model are **included** in the structural FE model.
 - These surface CFD grids are connected to the nearest structural finite element method grids using interpolation (RBE3) elements.
 - This proposed fitting technique between structural finite element and CFD models is <u>successful</u>.

The most critical technology for the success of the proposed approach is the robust **MIMO parameter estimator**.

Structural Dynamics Group Chan-gi Pak-19/19

Questions?

